

"Wärmenetze im energetischen Monitoring" – Nemo

Projektlaufzeit: 01.01.2018 – 31.12.2021 (48 Monate)

» Förderkennzeichen: 03ET1538

» Gefördert durch:

» Projektpartner:

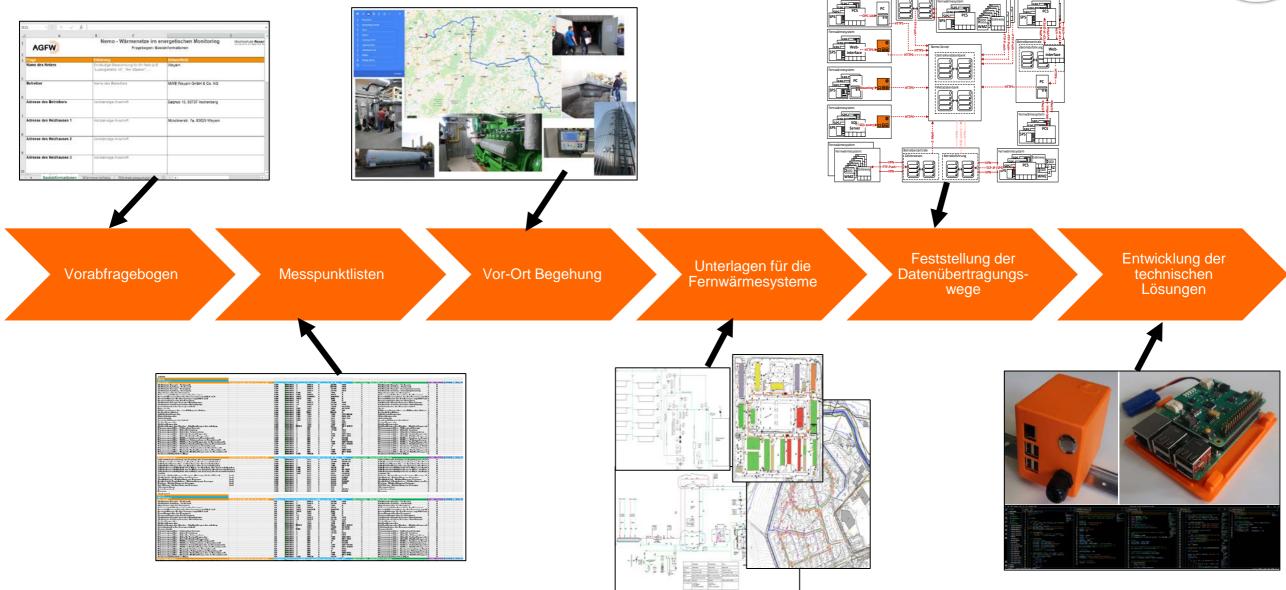
Entwicklung von Monitoring Methoden am Beispiel von Hausstationen (HAST)

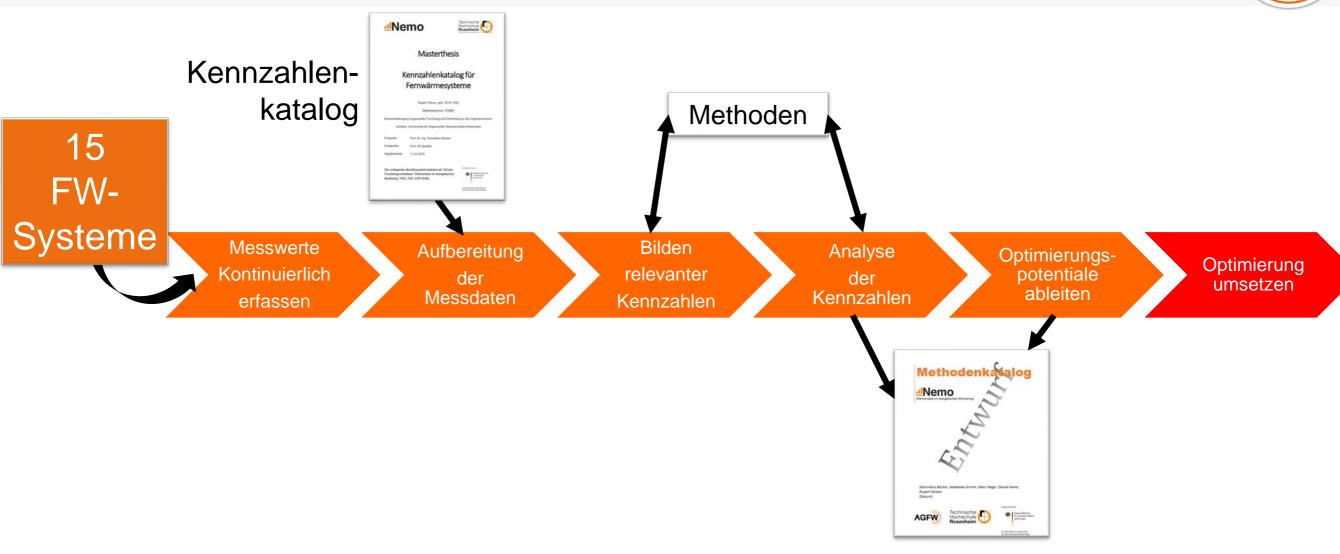
- » Begrüßung & Einleitung Sebastian Grimm, AGFW e.V., F&E Prof. Dr.-Ing. Dominikus Bücker, TH Rosenheim
- » Teil 1: Aufwand zum Monitoring (Erfahrungen iHAST) Harald Rapp, AGFW e.V., Bereichsleiter Stadtentwicklung
 - » Digitalisierungsstufen von HAST
 - » Digitalisierungsstrategien/ Roll-out
 - » Fördermöglichkeiten für FWVU
- » Teil 2: Monitoring-Methoden
 Marc Hager, Rupert Wieser, TH Rosenheim
 - » Detaillierte Vorstellung der Methoden zu HAST
 - » Umsetzungsbeispiele zur Visualisierung
 - » Anforderungen an Sensorik Messwerte und Bewertung des Aufwandes

- » Von der Hochschule in die Praxis: Monitoring mit den Nemo-Methoden
 - Prof. Dr.-Ing. Dominikus Bücker, TH Rosenheim
- Teil 3: Juristische Aspekte zum Monitoring von HAST Dr. Norman Fricke, AGFW e. V., Bereichsleiter Recht und Europa
- Teil 4: Rückfragen und Ausblick,
 Moderation: Sebastian Grimm, AGFW e.V., F&E

Individuelle Diskussionsrunden

- » Diskussionsforum 1: Methoden aus Nemo 1(THRo)
- » Diskussionsforum 2: Methoden aus Nemo 2 (THRo)
- Diskussionsforum 3: Aufwand Monitoring (AGFW)
- Diskussionsforum 4: F&E-Projekte "Digitalisierung in der Fernwärme" (AGFW)




Monitoringvorbereitungsphase

Vorgehen im Forschungsvorhaben

- Umfassende Literaturrecherche mit insgesamt 142 identifizierten Kennzahlen
- » Systematische Zuordnung in Teilsysteme:
 - Wärmeerzeugung
 - Wärmeverteilnetz
 - Wärmeverbrauch
- » Nomenklatur, Indizierung, Berechnungsformeln und Verweise

4.3.1-14. Temperaturspezifisches Massenreduzierungspotenzial des Wärmeträgers (Primärseite) – HS

Kennzahl				Berechnungsgröße	
Bezeichnung	Einheit	Berechnungsgrundlage		Bezeichnung	Verweis
$\widehat{m}_{ ext{HS,pri,PR,htf}}$	m³	$rac{m_{ ext{HS,pri,htf}}}{1+rac{1 ext{K}}{\Delta \widehat{T}_{ ext{HS,pri}}}}$	[4-86]	$m_{ ext{HS,pri,htf}}$ $\Delta \widehat{T}_{ ext{HS,pri}}$	4.3.1-4 4.3.1-9

Masterthesis

Kennzahlenkatalog für Fernwärmesysteme

Rupert Wieser, geb. 28.05.1992

Matrikelnummer: 819663

Masterstudiengang angewandte Forschung und Entwicklung in den Ingenieurwissen-

schaften, Hochschule für Angewandte Wissenschaften Rosenheim

Erstprüfer:

Prof. Dr. Ing. Dominikus Bücker

Zweitprüfer:

Prof. Uli Spindler

Abgabetermin:

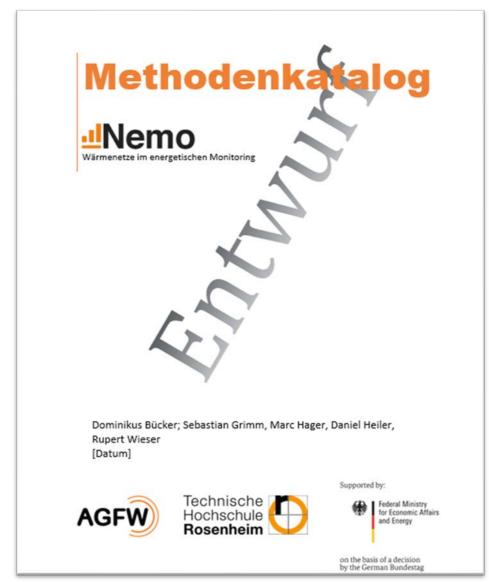
11.03.2019

Die vorliegende Abschlussarbeit entstand als Teil des Forschungsvorhabens "Wärmenetze im energetischen Monitoring" (FKZ: FKZ: 03ET1538).

Gefördert durch:

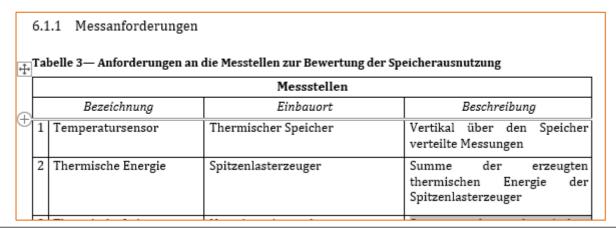
Bundosministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages


Verfügbar unter https://www.agfw.de/nemo/

Vorläufiges Inhaltsverzeichnis:

- 3 Daten und ihre Darstellungen
- » 1.1 Zeitreihen
- » 1.2 Datenaufbereitung
- » 2 Systemgrenzen
- » 3 Wärmeerzeugung
 - 1 Methode
- » 4 Wärmeverteilung
 - 9 Methoden
- » 5. Wärmeverbrauch
 - 9 Methoden
- » 6. Thermische Speicher
 - 5 Methoden



Prinzipieller Aufbau der einzelnen Methoden

» Kurze Einführung zum übergeordneten Teilsystem

Tabelle 2— sensible thermische Speichertypen in Fernwärmesystemen						
nbauort Nutzen						
thermische Speicher als eigene Komponente						
Kurzzeitspeicher — Abdeckung kurzer Tageslastspitzen h üblicherweise an eisepunkten des verteilnetzes						
eitspeicher neben — Sicherstellung der Mindestleistungsabnahme Komponenten zu bei Wärmeüberschuss nerung						
Kurzzeitspeicher — Einsatzoptimierung von KWK Anlagen h üblicherweise an eisepunkten des erteilnetzes — Energien — Bedarfsanpassung von Power to Heat						
eisepunkten des Energien						

- » Hintergrundinfos zur Methode und deren Anwendungsbereich
- » Messanforderungen

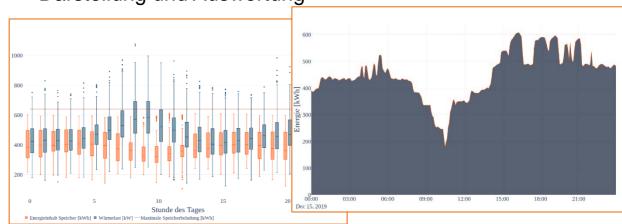
Kennzahlen und Berechnungsmethoden

Nutzbare Wärmemenge

Die nutzbare Wärmemenge eines thermischen Speichers kann anhand der Speichertemperaturen abgeschätzt werden. Ein Sensor wird einem Volumen des Speichers zugeordnet. Mit Hilfe der Wärmegleichung kann für das Volumen der Energieinhalt berechnet werden.

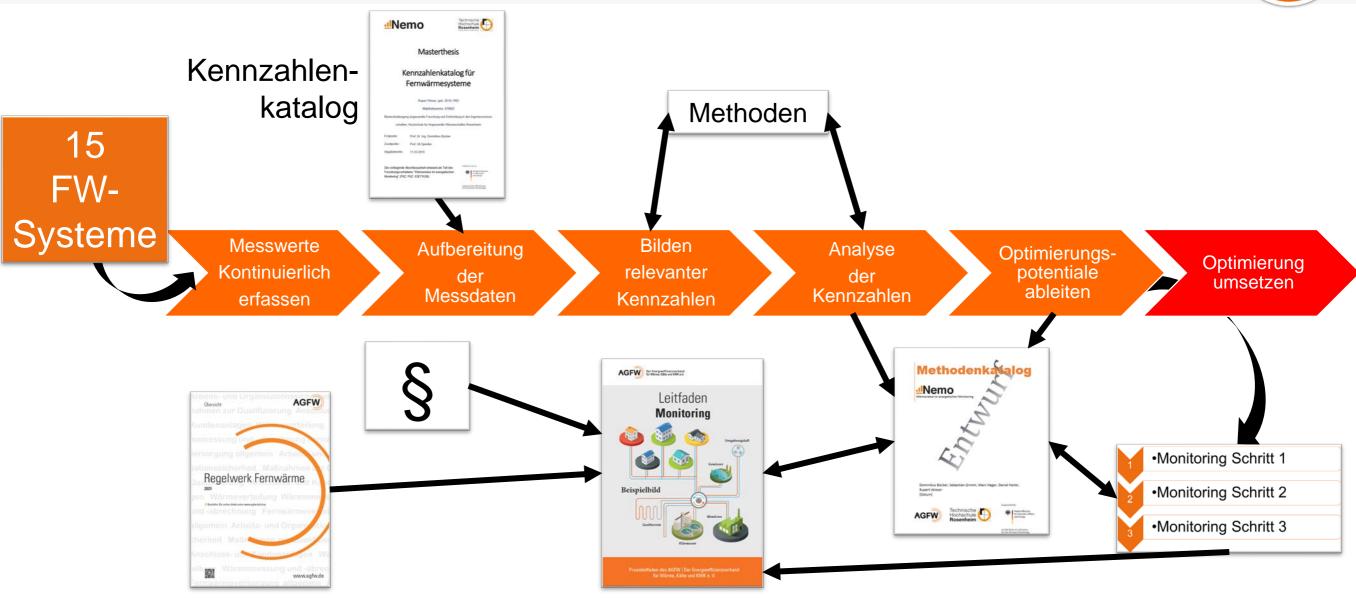
$$Q_{\text{TES,usab}} = \sum_{h} V_{h} \cdot \rho_{\text{htf,h}} \cdot c_{\text{htf}} \cdot \Delta T_{\text{TES,usab}}$$
 (3.1-1)

$$\Delta T_{\text{TES,usab}} = \begin{cases} 0 & for \ T_{\text{TES,h}} - T_{\text{TES,h,low}} \le 0 \\ T_{\text{TES,h}} - T_{\text{TES,return}} & for \ T_{\text{TES,h}} - T_{\text{TES,h,low}} > 0 \end{cases}$$
(3.1-2)


 $Q_{TES,usab}$ = Speicheraktivitätsindex

V_h = Das Speichervolmen das der höhe h zugeordnet ist

 $\rho_{htf,h}$ = Dichte des Wärmeträgermediums


ρ_{htf.h} = Wärmekapazität des Wärmeträgermediums

Darstellung und Auswertung

Vorgehen im Forschungsvorhaben

Leitfaden "Monitoring von FW-Systemen"

- » Leitfaden: "kurz gefasste Darstellung zur Einführung in ein Wissensgebiet"
- Übersichtsdokument zum Thema Monitoring
 - Motivation Monitoring/ Digitalisierung
 - Mögliche Ziele eines Monitoring
 - Vorstellung des Methodenkatalog
 - Allgemeine Infos zur Datenaufbereitung
 - Mögliche Vorgehensweisen zur Identifikation von Optimierungspotentialen
 - Vorgehen für ein individuelles "Monitoring"

Vorgehen zum Minimal Monitoring

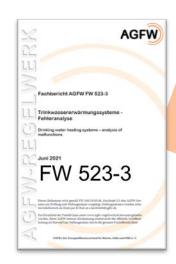
Variante: Kostengünstig/ minimaler Aufwand

Sammeln verfügbarer Daten

Auswahl relevanter Werte/ Kennzahlen

Konzepte zur Datenaufbereitung

Anforderungen kostengünstiges



Monitoring

Vorgehen zum Minimal Monitoring

Variante: Bedarfsorientiertes Monitoring

 Identifikation und Priorisierung von "Fehler" im FW-System

• Erfassen möglicher "Symptome" & Ursachen

Messkonzept für messbare Parameter

Anforderungen bedarfsorientiertes Monitoring

Vorgehen zum Minimal Monitoring

Variante: Grobe Zielvorgabe bekannt

Anforderungen kostengünstiges Monitoring

Anforderungen bedarfsorientiertes Monitoring

Weitere Anforderungen Abschätzung technischen Aufwands

Prüfen Kosten/ Nutzen → Rollout Strategie

Prüfen rechtlicher Rahmenbedingungen

Individuelles Minimal-Monitoringkonzept

Teil 1: Aufwand zum Monitoring (Erfahrungen iHAST)

Harald Rapp, AGFW e.V., Bereichsleiter Stadtentwicklung

- Digitalisierungsstufen von HAST
- » Digitalisierungsstrategien/ Roll-out
- Fördermöglichkeiten für FWVU

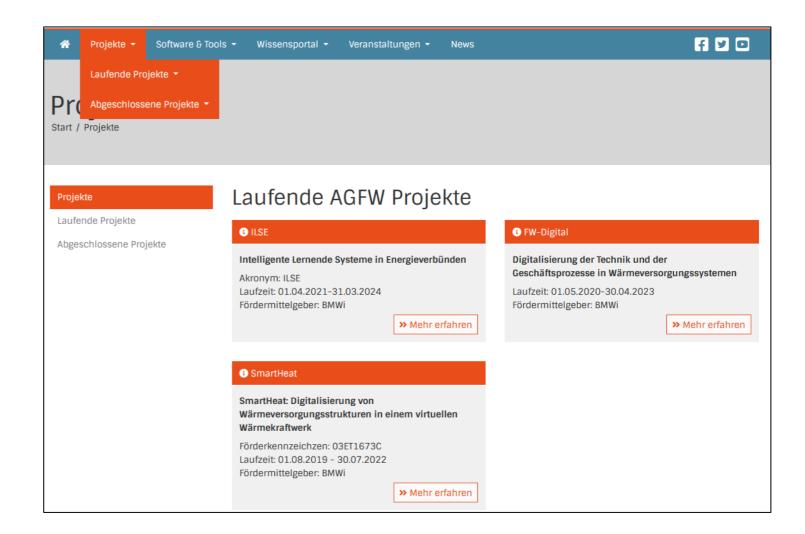
Teil 2: Monitoring-Methoden

Marc Hager, Rupert Wieser, TH Rosenheim

- » Detaillierte Vorstellung der Methoden zu HAST
- » Umsetzungsbeispiele zur Visualisierung
- » Anforderungen an Sensorik Messwerte und Bewertung des Aufwandes

Teil 3: Juristische Aspekte zum Monitoring von HAST

Dr. Norman Fricke, AGFW e. V., Bereichsleiter Recht und Europa



Veröffentlichung der Projektprodukte

- Alle Infos in den AGFW News: www.agfw.de/agfw-news
- » Weitere Informationen zum Forschungsvorhaben Nemo: www.agfw.de/nemo
 - Methodenkatalog
 - Projektveröffentlichungen
 - Infos zum Abschlussbericht
- » Inhalte zeitnah auch auf Projektübergreifender Plattform

"Intelligente Lernende Systeme in Energieverbünden" - ILSE

Förderkennzeichen: 03EN3033B

Laufzeit des Vorhabens: 01.04.2021 – 31.03.2024

Gefördert durch:

Projektpartner:

» Zugangsdaten:

Link gleich im Chat
 https://app.wonder.me?spaceId=fb974448 8e6e-4282-b88d-5079c8c0cb79

Passwort: Nemo

Sebastian Grimm
Forschung & Entwicklung
E-Mail: s.grimm@agfw.de
Tel: +49 (0)69/ 6304-200

Danke für Ihre Unterstützung

www.agfw.de

Frohe Weihnachten

