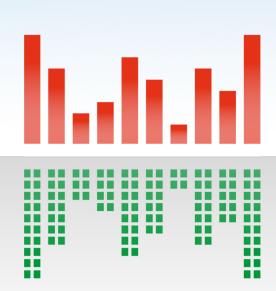


Digitaler Zwilling zur flexibilisierten und effizienzoptimierten Steuerung dezentralisierter Fernwärmenetze


Projektvorstellung

Übersicht

- Rahmendaten
- Ausgangssituation
- Zielsetzung
- Grundlagen
- Ansatz & Zwischenstand

Rahmendaten

Allgemeine Projektinformationen

- DingFESt Digitaler Zwilling zur Flexibilisierten und Effizienzoptimierten Steuerung dezentralisierter Fernwärmenetze
- * Förderung: Bundesministerium für Wirtschaft und Klimaschutz (FKZ: 03EN3015)
- ❖ Bewilligter Förderzeitraum: 01.01.2021 31.12.2023
- Konsortium:
 - GEF Ingenieur AG, Leimen (Koordination)
 - Technische Werke Ludwigshafen am Rhein AG
 - Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Ausgangssituation

Gegenwärtige Situation in der Fernwärme-Betriebssteuerung/Einsatzplanung

- Netzverhalten in bestimmten Betriebssituationen intransparent
 - Problematisch bspw. in saisonalen Übergangsphasen mit häufigen Witterungsschwankungen
- Betriebsmitteleinsatz und -fahrweise erfolgen im Regelfall auf Grundlage von Erfahrungswerten und Routinen
 - Beeinträchtigung der Flexibilität
- Unsicherheiten hinsichtlich des Netzverhaltens erfordern eine entsprechende Vorhaltung entsprechender Sicherheitsmargen
 - Maßgebliche Belastung der wirtschaftlichen und ökologischen Effizienz
- Störungen im Netz lassen sich oft nur mittelbar detektieren und nicht exakt lokalisieren
 - Risiko hoher Folgekosten und temporäre Gefährdung der Versorgungssicherheit
- Zustand von Netzkomponenten normalerweise nur vor Ort überprüfbar
 - Vorausschauende/präventive Instandhaltung der Assets nur bedingt möglich

Zukünftiger Wandel in der Fernwärmeversorgung

- Abnahme des Wärmebedarfs
 - Erforderliche Netztransformation: Temperatursenkung, Netzausbau/-verdichtung, Netzkopplung etc.
- Dezentralisierung der Netze
 - Einbindung verteilter Erzeuger mit unterschiedlichen Temperaturen, Volatilitäten und Steuerbarkeiten
- Differenzierung des Konsumentenverhaltens
 - Adäquate Prognosemethoden für das Verhalten diverser Prosumerkonfigurationen und -konstellationen
- Dekarbonisierung der Wärmeerzeugung
 - Regenerative bzw. CO₂-freie Wärmeerzeugung aus konstanten und inkonstanten Quellen
- Multiskalige Sektorkopplung
 - Flexibilisierung des Betriebs zur integrativen Einbindung der FW in ein übergeordnetes Gesamtsystem

Komplexität

Transparenz

1

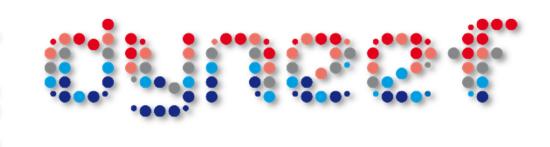
Dynamik



Zielsetzungen

Ziele DingFESt = zukünftige Anforderungen an die FW-Betriebssteuerung

- Hohe Transparenz des Netzverhaltens, auch bei zunehmender Komplexität und Dynamik
 - Exakte und räumlich hochaufgelöste Abbildung des thermohydraulischen Netzverhaltens in Echtzeit
- Belastbare Prognosen zu Lastsituationen, auch bei Diversifizierung der Erzeugerstrukturen
 - Rekursive Netzsimulation parallel zum laufenden Betrieb
 - Berücksichtigung autonom agierender, dezentraler und ggf. volatiler Prosumer
- Vorausschauende Optimierung zu situativem Betriebsmitteleinsatz und -fahrweise
 - Unmittelbar: Integration in die Kraftzwerkseinsatzoptimierung
 - Mittelbar: (Quasi-)Autonomer Netzleitstand
- Flexibilisierung der Sektorkopplung
 - Entkoppelung von Stromerzeugung und Wärmebedarf
- Vorbeugende Detektion und Lokalisierung möglicher Netzstörungen
 - Gezielte, präventive Instandhaltung der Netzinfrastruktur



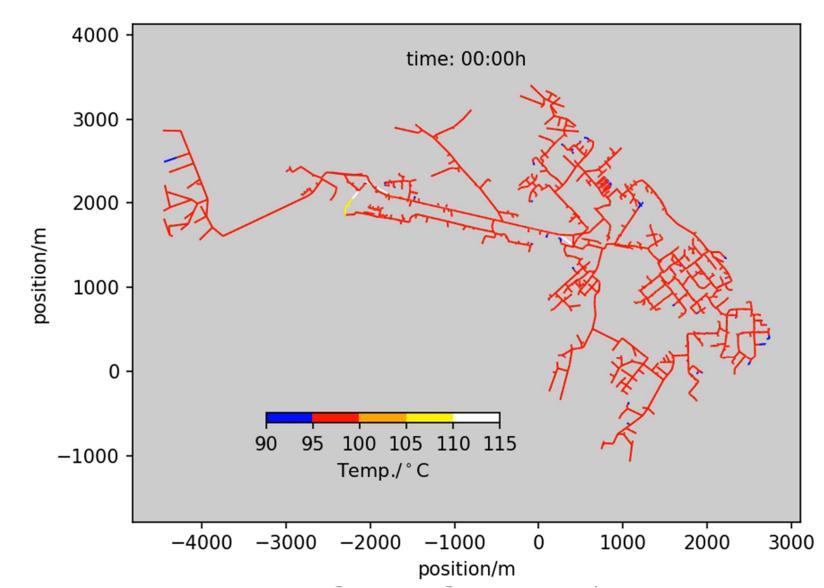
Technische Grundlagen

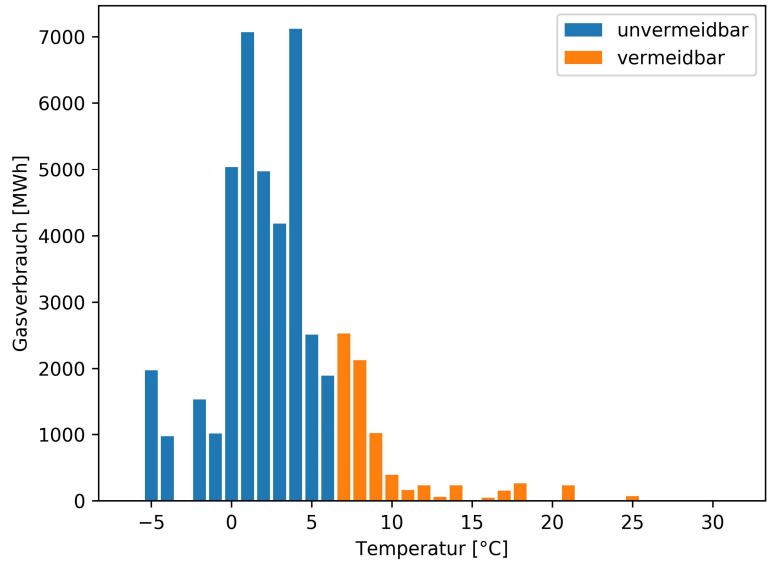
dynamische netzsimulation zur effizienzsteigerung und emissionsreduzierung in der fernwärmeversorgung

- Dynamische Netzsimulation "AD-Net Fernwärme"
 - Hohe räumliche und zeitliche Auflösung
 - Darstellung von Laufzeiteffekten
 - Performante Berechnung großer Netze in Echtzeit und über große Zeiträume
 - Evaluierung anhand realer Messdaten des Ludwigshafener Großstadtnetzes
- Automatisches Differenzieren (AD) zur direkten Anbindung an Optimierer
- Anbindung an die zentrale Kraftwerkseinsatzoptimierung
- Import-Schnittstelle zu STANET

Gefördert durch:

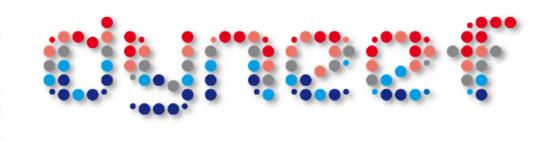
aufgrund eines Beschlusses des Deutschen Bundestages

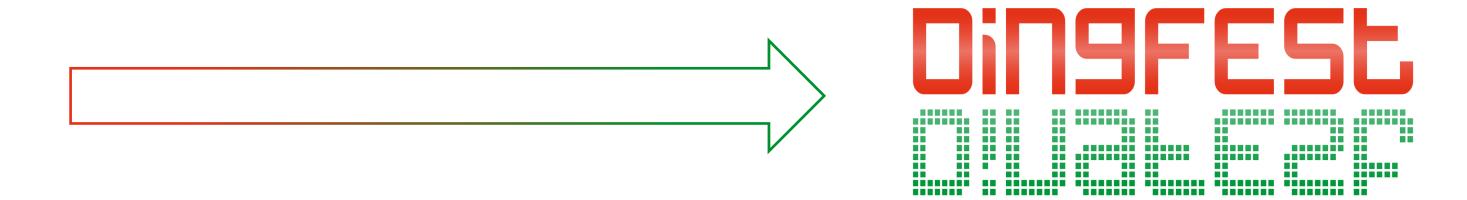




dynamische netzsimulation zur effizienzsteigerung und emissionsreduzierung in der fernwärmeversorgung

- ✓ Hohe Akkuratheit der Prognosen
- Optimierung des Betriebsmitteleinsatzes
- ✓ Vermeidung von Zusatzbefeuerung zu Müllverbrennung (an Tagen mit einer mittleren Temperatur ≥ 7 °C):
 - Emissionsreduktion von ca. 1.700 t CO₂ bzw.
- ✓ Vermeidung starker Temperaturschwankungen im Netz
- Optimierung des Pumpenbetriebs durch genaue Kenntnis der Schlechtpunktpositionen
- ✓ Lokalisierung von Störungen / fehlerhafter Einstellungen



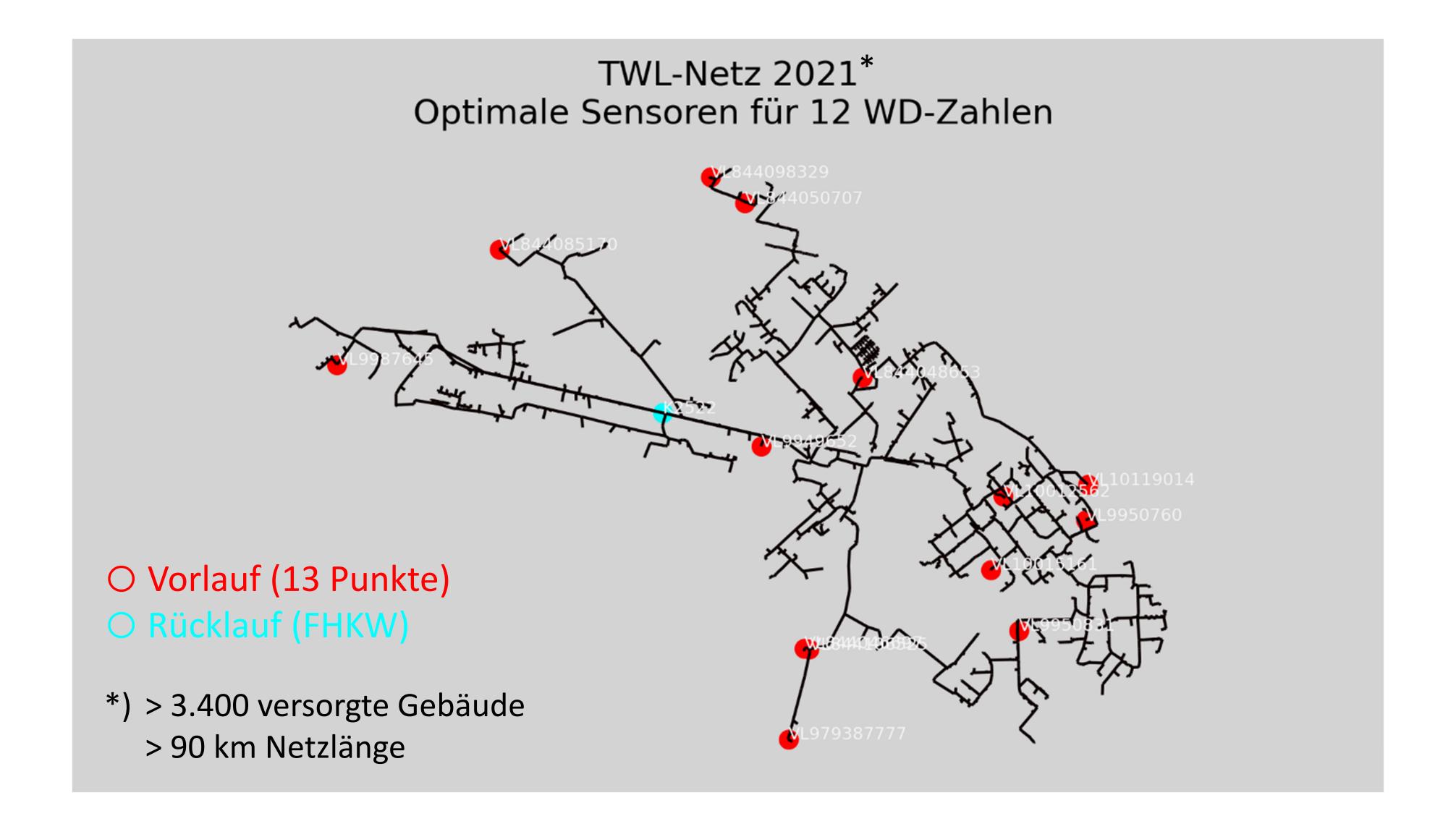



dynamische netzsimulation zur effizienzsteigerung und emissionsreduzierung in der fernwärmeversorgung

- Kalibrierung und Evaluierung retrospektiv anhand historischer Messdaten (Grundlage TWL-Messkampagne 2018)
- Für umfassende Validierung noch keine hinreichende Zahl Messdaten vorhabenden
- Für einen zweckmäßigen Praxiseinsatz (Einbettung in Kraftwerkseinsatzoptimierung) werden fortlaufend Echtzeit-Messdaten aus dem Netz benötigt
- Systemintegration in einem digitalen Leitstand noch kein Gegenstand des Vorhabens

Ansatz & Zwischenstand

- Fortlaufende Kalibrierung und Validierung der dynamischen Netzsimulation (DYNEEF-Rechenkern) mit Messdaten aus dem Netz (permanenter Abgleich des simulierten Netzzustands mit Echtzeitmessungen) ...
- … liefert räumlich hochaufgelöstes und sehr akkurates Echtzeit-Abbild des Netzzustands parallel zum laufenden Betrieb ("Digitaler Zwilling"), auch unter…
- ... Berücksichtigung dezentraler und volatiler Erzeuger
- Optimierer reagiert ad hoc auf sich ändernde (innere und äußere) Systemparameter und liefert so situativ ideale Vorschläge für effizienten Betriebsmitteleinsatz und -fahrweise
- Digitaler Zwilling erlaubt eine frühzeitige Detektion sowie die exakte Lokalisierung von Störungen im Netz
- Kommunikation der verteilten Messdaten zum zentralen Leitstand erfolgt mittels drahtloser IoT-Technologie (LPWAN)


Aktueller Zwischenstand

- ✓ LPWAN im Ludwigshafener Versorgungsgebiet wurde aufgebaut (LoRaWANTM)
- ✓ Algorithmus zur initialen Berechnung einer intelligenten Sensorplatzierung in Netz wurde entwickelt
 - Mathematische Optimierung anhand von Sensitivitäten bestimmter Modellparameter (Rohrrauhigkeitsund Wärmedurchgangskoeffizienten) auf Grundlage von Ergebnissen der dynamischen Simulation
 - Liefert minimale Anzahl von Messstellen an neuralgischen Punkten im Netz für maximal akkurate
 Simulationsergebnisse
 - Berücksichtigt bereits bestehende oder geplante Messpunkte (bspw. Smartmeter bei Kunden)
 - Berücksichtigt thermohydraulische Aspekte (bspw. Druckschlechtpunkte in der Netztopologie)
 - Berücksichtigt, soweit dokumentiert, lokale Zugänglichkeiten zum Netz und LPWAN-Konnektivitäten
- ✓ Verschiedene Varianten der Mess- und Kommunikationslösungen wurden evaluiert
- Installation der Messstellen bzw. Smartmeter beim Praxispartner TWL hat begonnen

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Vielen Dank für Ihre Aufmerksamkeit!

... Fragen?!

